
Journal of Statistical Physics, VoL 36, Nos. 3/4, 1984 

The Kinetic Boundary Layer for the Klein- 
Kramers Equation; A New Numerical Approach 

Jonathan V. Selinger 1'2 and U. M. Titulaer 1 

Received October 27, 1983; revision received March 1, 1984 

We explore a numerical technique for determining the structure of the kinetic 
boundary layer of the Klein-Kramers equation for noninteracting Brownian 
particles in a fluid near a wall that absorbs the Brownian particles. The equation 
is of interest in the theory of diffusion-controlled reactions and of the 
coagulation of colloidal suspensions. By numerical simulation of the Langevin 
equation equivalent to the Klein-Kramers equation we amass statistics of the 
velocities at the first return to the wall and of the return times for particles 
injected into the fluid at the wall with given velocities. The data can be used to 
construct the solutions of the standard problems at an absorbing wall, the Milne 
and the albedo problem. We confirm and extend earlier results by Burschka and 
Titulaer, obtained by a variational method vexed by the slow convergence of the 
underlying eigenfunction expansion. We briefly discuss some further boundary 
layer problems that can be attacked by exploiting the results reported here. 

KEY WORDS: Boundary layer; Brownian motion; diffusion-controlled 
reactions; Milne problem; atbedo problem; numerical simulation. 

1. INTRODUCTION AND SURVEY 

Kinetic boundary layers occur in systems described by kinetic equations 

when one imposes boundary conditions that cannot be satisfied by a 

distribution function of  local equilibrium type. In such layers the Chap- 

man-Enskog  solution procedure breaks down: to satisfy the boundary 

conditions the C h a p m a n - E n s k o g  solution must be supplemented by a 

boundary layer solution, concentrated in a region near the wall with a 

thickness of  the order of  the mean free path. Knowledge of  this boundary 
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layer solution is necessary to determine the boundary conditions to be 
imposed on the hydrodynamic equations derived by means of the Chap- 
man-Enskog method, in particular the so-called slip or accommodation 
coefficients. (1) An example of such a slip coefficient is the Milne 
extrapolation length near an absorbing or partially absorbing wall. (2) 

The explicit construction of a boundary layer solution has thus far been 
achieved only for plane walls and for very simple kinetic equations, in which 
the collision operator has but a single nonzero eigenvalue. Examples are the 
radiative transfer equation for grey matter (a) (or the mathematically identical 
one-speed neutron transport equation) and the BGK model for the linearized 
Boltzmann equation. (1) In one of its variants this exact solution proceeds in 
two steps. First one constructs a set of fundamental boundary layer 
solutions. Subsequently, one finds a particular linear combination of them 
that satisfies the boundary condition; this is accomplished by means of a so- 
called half-range expansion formula. (3) 

The same solution strategy can be followed for more general kinetic 
equations. The required modifications of the formalism for the linearized 
Boltzmann equation can be found in a paper by Waldmann and Vestner.(4) 
However, in general neither the fundamental boundary layer solutions nor 
the half-range expansion formula are known explicitly. Hence one must rely 
on approximate procedures, whose quality is hard to asses. 

A case of intermediate tractability is provided by the Klein-Kramers 
equation (5) for positions and velocities of an assembly of noninteracting 
Brownian particles in a fluid. Its solutions exhibit a kinetic boundary layer 
near a completely or partially absorbing wall. (6) Such solutions are of 
interest for the description of diffusion-controlled reactions of large 
molecules in a fluid, (7) or of coagulation in colloidal suspensions. (8) For this 
case the fundamental boundary layer solutions at a plane wall in the absence 
of any external forces on the Brownian particles were found by Pagani, ~ 
and their analogs for a uniform external force by Burschka and Titulaer. (1~ 
Moreover, the existence of a half-range expansion formula was recently 
proved rigorously by Beals and Protopopescu (11); the proof can be extended 
to a large class of differential equations of Sturm-Liouville type.(27) Similar 
results for a class of problems including certain integrodifferential equations 
similar to the linearized Boltzmann equation were proved by Greenberg and 
van der Mee. (2~) 

The existence proof in Ref. 11 does not provide a recipe to construct the 
solution via a half-range expansion formula. One way to construct the 
solution, carried out by Burschka and Titulaer ~12'1~ and justified a posteriori 
by the results of Ref. 11, is to approximate it by finite sums of fundamental 
boundary layer solutions, optimized via a variational principle. However, 
since the expansion of the desired solution in terms of the fundamental ones 
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converges very slowly, this method requires extensive numerical 
computations. Even the best linear combination of 140 fundamental 
solutions does not satisfy the boundary conditions very well, but some 
physical quantities of interest, such as the Milne extrapolation length, can be 
predicted with confidence using an empirical extrapolation procedure. The 
reasons for the slow convergence can be understood from the asymptotic 
behavior of the Pagani solutions. ~13) Replacing the variational procedure by 
a moment matching method due to Marshak, t14) as proposed by Razi Naqvi 
et aI., appears to improve the initial rate of convergence, 3 but the method has 
the same basic drawback: one tries to approximate a nondifferentiable 
function by a linear combination of analytic basis functions. Replacing the 
exact Pagani solutions by approximate ones, as done in Ref. 15 and in earlier 
work by Harris, t17) offers little hope for fundamental improvement. 

In the present work we do not attempt to base our treatment on an 
explicit expansion in terms of the Pagani solutions. Instead we exploit a 
theorem, discussed more fully in the next section, that reduces the expansion 
to quadratures once an auxiliary problem, the albedo problem, has been 
solved. In the albedo problem one considers a particle injected into the 
system at the wall with a given velocity, and asks for the probability 
distribution of its velocity when it returns to the wall for the first time. (The 
particle is sure to return when the wall is plane; the problem is a variant of 
the gambler's ruin problem. ~18)) The solution of the albedo problem is found 
via a numerical simulation of the Klein-Kramers equation, or rather of the 
equivalent Langevin equation. There is one complication: since the mean 
value of the time of first return is infinite, a straightforward simulation is 
impossible; we find that, for a typical distribution of injection velocities, 
about 60% of the particles have returned after 15 relaxation times. However, 
their velocity distribution as a function of the return time rapidly approaches 
a limit, and it appears safe to assume that the particles returning after 15 
relaxation times will exhibit this same asymptotic velocity distribution. This 
conjecture is supported by an approximate analytical treatment. Once we 
accept the conjecture on the velocity distribution of the late returners, the 
solution of the albedo problem is complete. 

The remainder of this paper is organized as follows: in Section 2 we 
discuss in more detail the Pagani solutions and the relation between the half- 
range expansion formula and the solution of the albedo problem. In Section 3 
we discuss our simulation procedure and the evidence for the conjecture on 
the velocity spectrum for the late returners. In Section4 we discuss the 
stationary solution of the Klein-Kramers equation with a plane absorbing 

a For similar observations concerning the Boltzmann equation see Ref. 16. 
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wall, as constructed from the results of our simulation. The results are 
compared with those of earlier treatments. Section 5 is devoted to a more 
detailed discussion of our numerical solution of the albedo problem. In 
particular we provide a convenient parametrization of the albedo kernel. This 
kernel expresses the velocity distribution of the Brownian particles at their 
first return in terms of their velocity distribution at injection. In Section 6 we 
show how knowledge of the albedo kernel enables one to solve problems with 
a partially absorbing wall. We give explicit results for the simplest such case, 
where particles that are not absorbed are reinjected with a velocity 
distribution corresponding to thermal equilibrium at the temperature of the 
fluid. Section 7 contains a few concluding remarks. 

2. BASIC EQUATIONS A N D  T H E O R E M S  

The Klein-Kramers equation for the probability distribution of position 
x and velocity u of a Brownian particle in a fluid reads 

8P(u, x, t) -u  �9 y . . . .  
8t ~x + mflSu 8u + - ~ u  u P (u ,x , t )  (2.1) 

where y is the friction constant, m is the mass of the particle, and fl equals 
(kT)- 1 with T the temperature of the fluid. In the remainder of this paper we 
shall use units such that 7 = mfl = 1. This means that times are measured in 
units 7 -1 and lengths in units of l=7-1(mfl) -m,  the velocity persistence 
length (19) that plays the role of a mean free path in the kinetic equation (2.1). 
Furthermore, we are interested only in stationary solutions with full trans- 
lational symmetry in the y and z direction. Such solutions must have the 
form 

P(u, x, t ) =  (27r) -1 exp[--�89 } + Uz2)] P(ux, x) (2.2) 

with P(ux, x) a solution of 

u ~-~ P(u,x)= [ ~--~ + ~--~u] P(u,x) (2.3) 

where we replaced the variable u x by u. 
The reduced Klein-Kramers equation (2.3) has two independent 

solutions of Chapman-Enskog type, for which the density n(x) = f P(u, x) du 
obeys the diffusion equation (82/8x z) n(x)= 0. These are the equilibrium 
solution 

qG(u, x) = Oo(U) = (2~)-  1/2 exp [-- �89 21 (2.4) 
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and a current-carrying solution: 

~,f(u,  x )  = ( x u - 1  _ 2 ) 06(u) 

with 
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(2.5a) 

with 

Oen(U) = (n!) 1/2(87rn)-l/4(2e) ,/2 exp[--�89 :g ni/2) 2] 

• H,[2-1/2(u T 2nl/2)] (2.6b) 

and Hn({ ) the nth  Hermite polynomial. 
The set of functions {00(u), G(u), 0• is orthogonal and complete 

on - o v  < u < oo with respect to the indefinite scalar product 

+oo 
( f  g) =~ du u exp[lu 2] f (u)  g(u) (2.7) 

- - 0 0  

The orthogonality relations are ~ 

(0+. ,  0+m) = 6nm, ( 0 - . ,  0-m) = --6nm 

(0+n, 0-m) = (0• 0o) = (0~n, 0f) = 0 

(0o, 0f} = (2~r)-i/2, (0o, 0o} = (0f, 0f) = 0 (2.8) 

Any function f (u)  such that 

f du lul exp[�89 < m (2.9a) 

can be expanded according to  (9'11) 

f(u) = doOo(U ) + d[~O[~(u ) + @ [d nO n(u) + d+nO+,(u)] (2.9b) 
n = l  

d+, = (O+n,f}, d-n = - ( O - n , f }  

d o = (2~)1/2(0~,f}, d; = (27r)1/2(Oo,f) (2.9c) 

with 

O; (u) = (270 -1/2u exp [-- ~u 21 (2.5b) 

In addition, (2.3) has the fundamental boundary layer solutions found by 
Pagan• (9) 

q,'• x) = exp[q:xn 1/2] O• ' n = 1, 2, 3 .... (2.6a) 
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The completeness relation (2.9b) allows one to construct a solution 
P(u,x) of (2.3) with prescribed values P(u,O)=f(u): one simply replaces 
the ~(u) in (2.9b) by the corresponding gt(u, x). However, this solution will 
in general grow exponentially in both x directions, and it is not likely to be 
of physical interest. In most half-space problems one must satisfy boundary 
conditions of a different kind: only the density of the particles with u > 0 is 
prescribed at the boundary (assuming the medium is to the right of x = 0), 
but we accept only solutions without parts that grow exponentially for 
x --, oo. Physically one expects (19) that for x ~> 1 the solution approaches one 
of Chapman-Enskog type, i.e., a linear combination of ~0 and ~,;. A typical 
boundary layer problem is the following. 

The Albedo Problem (2). Find a solution of the form 

such that 

PC(u, x) = do O0(u) + x), 
n = l  

x >~ 0 (2.10a) 

PI(u, 0) = f + ( u )  for u > 0 (2.10b) 

This corresponds to the situation that uf+(u)du particles with velocities in 
du around u are injected into the fluid at x = 0 per unit time (leading to a 
particle density f+ (u) for u > 0), and leave the fluid at their first return to the 
plane x = 0. The velocity distribution of the emerging particles is then given 
by 

uf_(u) =- uPf ( - -u ,  0) (2.11) 

A sufficient condition for the unique solvability of the albedo problem is 
the half-range completeness property: f+ (u) possesses a unique expansion of 
the form 

00 

f+(u)=dloOo(U)+ ~ dI+,O+~(u) for u > 0  (2.12) 
r t ~ l  

The existence and uniqueness of such an expansion was proved by Beals and 
Protopopescu(~ ~) for f+ (u) that obey (2.9a). An alternative formulation of 
this result is: each f+(u) has a unique continuation f_(-u) such that 
f+(u) +f_(-u) lies in the subspace spanned by qi0(u ) and the ~b+~(u) with 
n = 1, 2,.... Owing to the linearity of the albedo problem, the functionsf+(u) 
and f_(u)  must be linearly related; this relation can be expressed by means 
of the albedo kernel A (u ] u') defined by 

o o  

uf_(u) =fl du' A(u] u') u'f+(u') (2.13) 
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The albedo kernel expresses the probability that a particle injected into the 
fluid with velocity u' will leave it with velocity - u .  Once PI(u, O) = f~ (u) + 
f _ ( - u )  is known, the full solution PI(u, x) can be constructed via the full- 
range completeness relation (2.9b), as discussed earlier. 

A second important boundary problem is the Milne problem: construct 
a solution of (2.3) of the form 

PM(u,x)=~'o(U,x)+dYOo(U)+ ~ d~nqJ+~(u,x), x>~O (2.14a) 
n = l  

such that 

pM(u,O)=O for u > 0  (2.14b) 

This describes the situation that a constant current of particles, of value 
unity, flows from +oo toward a wall at x = 0 that absorbs all Brownian 
particles impinging on it. The solution follows from that of the albedo 
problem: 

,00 

PM(u,O)=O;(U)+[U]-I( du'a(u]u')u'O;(u') for u < 0  
d 0 (2.15) 

= 0  for u > 0  

The expansion coefficients do M and d~n then follow via (2.9). The coefficient 
d~ 4 plays a special role; from (2.14a), (2.4) and (2.5) follows: 

n'~t(X)=fdupM(u,x)~x+(2~Z)I/2dMo=-X+X M for x>> 1 (2.16) 

This means that the solution of the diffusion equation that riM(x) approaches 
for large x does not extrapolate to zero at x =  0, but at x = - x  M. The 
quantity x M is the Milne extrapolation length mentioned in the Introduction. 
Using (2.8), (2.9), and (2.14) we find 

0 

x M = f  du u2pM(u, 0) (2.17) 
- - 0 0  

This simple expression for x M emerged only since we normalized PM(u, X) to 
have unit current; in general one has (a2) 

s /;2 x M = du u2p(u, O) du uP(u, O) (2.18) 
- - 0 0  
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We conclude this section by introducing a set of polynomials that will 
prove useful in representing numerically determined functions on the half line 
0 ~ < u < m  in the form 

f (u)  ~ q(u) exp[-- �89 2 ] (2.19) 

with q(u) a polynomial. One could use either the odd or the even Hermite 
polynomials of argument 2-1/2u, but these are tailored to functions with 
f (0 )  = 0 or f ' ( 0 ) =  0, respectively; they provide poor approximations when 
neither condition is fulfilled. Therefore we constructed by means of the 
Gram-Schmidt procedure (2~ a set of polynomials q,,(u) such that 

f :  du exp[ -  lu 2 ] q,(u) qm(U) = 6rim (2.20) 

The first five of these polynomials are given in Table I. They have the 
property that 

N 

fN(u)=exp[--�89 V' snqn(u ) (2.21a) 
r t = l  

with roe 
s, = 1o duq,(u) f (u)  (2.21b) 

is the best approximation of type (2.19) t o f ( u )  using a polynomial of degree 
N, when the error is measured by the weighted integral 

A N = du exp[lu 21 If(u) --fN(u)I2 (2.21C) 

The weight function in (2.21c), the inverse of the Maxwell equilibrium 
distribution, will appear to be a natural one in the applications of the fitting 
procedure in Sections 4 and 5, for reasons more fully explained in Section 5. 

Table I. The First Five Polynomials qn(u), Constructed to be 
Orthonormal with Respect to the Weight exp[ - (1 /2 )u2 ] .  

1 U U 2 ~3 U4 

qo(u) 0.8932 
ql(U) --1.1823 1.4818 
q2(u) 1.3486 --3.9379 1.7935 
q3(u) --1.4684 7.2500 --7.1641 1.7846 
q4(u) 1.5642 --11.3526 18.0474 -9.5113 1.5414 
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3. THE S I M U L A T I O N  PROCEDURE 

The calculational basis for the results reported in this paper  is the deter- 
mination of the albedo kernel A(u] u'), defined in (2.13), via a numerical  
simulation. The one-dimensional K le in -Kramers  equation is equivalent to 
the Langevin equations (zl) 

2 = u, zi = --Tu + ~(t) (3. l a) 

with ~(t) a Gauss ian  stochastic process obeying 

(~(t)) = 0, (~(t) ~( t ' ) )  = 27(mfl) -1 6(t - t ' )  (3. lb)  

Numerical  solution of this equation requires a discretizaton; as such we 
choose, in units such that )J = mfl = 1, 

x(t + r) = x(t) + ru(t) (3.2a) 

u(t + r) = (1 - r) u(t) + ~ (3.2b) 

with ~ a Gaussian random variable such that 

The choice (3.2c) ensures that (u2(t)) approaches the correct value unity 
when (3.2b) is iterated. 

To generate data for the determination of A ( u l u '  ) we use the initial 
values x(0)  = 0 and u(0) = u '  and iterate (3.2a, b) until x(nr)  < 0, or until n 
reaches a predetermined max imum value, for which we took nv= 15. I f  
x(nv) < 0 we register a returning particle at t R = n r  with velocity 
u R = u [ ( n - 1 ) r ] .  This ensures a negative return velocity; any at tempt to 
correct for velocity changes in the final time interval would lead to some 
positive "return velocities," which would be physically unacceptable.  [In 
view of  this, refinements of  the simple linearization (3.2a, b) were rejected as 
of  doubtful consistency.] Repeating this procedure for different realizations 
of  the stochastic process ~ yields a distribution of  return times and return 
velocities for either a given fixed initial velocity or for a given distribution 
j (u ' )  of initial velocities. The distribution so obtained will be denoted by 
NT(u R, t R I u ' )  or, for a distribution of initial velocities, by 

N~(UR, tR I j (u ' ) )  = f du' NT(U,, tR l u ' ) j ( u ' )  (3.3) 

To guide the choice of  the time step r in the main simulation we 
performed trial simulations of  3000 particles each for velocities distributed 
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uniformly in the intervals 0 < u'  < 0.5, 1 < u'  < 1.5 and 2 < u '  < 2.5, and 
for time steps r = 0 . 0 5 ,  0.02, 0.01, and 0.005. The results for several 
moments of the form 

15 c~ 

are given in Table II, together with their statistical error. We notice hardly 
any trend with r for the particles injected with the higher velocities. For 
slowly injected particles there is a clear trend, reflecting the fact that very 
low return velocities become more frequent as the time step gets smaller; this 
mainly influences the data for low injection velocities, since slowly injected 
particles are more likely to return slowly. Discretization errors are expected 
to be most serious for slowly returning particles: a "soft landing" becomes 
increasingly less likely as the "power bursts" become larger in the mean and 
spaced at larger intervals. For our main simulation we chose r = 0.01. This 
still involves a small systematic error for low return velocities, but allows us 
to obtain good statistics overall. The index r will henceforth be omitted. 

For our main simulation we followed 105 particles with an initial 
distribution jc(u')~ u'O~(u' ) O(u');  this distribution was chosen to generate 
accurate data for the solution (2.15) of the Milne problem. However, we kept 
track of the initial velocities u'  of each of the particles, in order to obtain 
results for the albedo kernel itself as well. To obtain A(uRlu' ) we must 

Table II. The Moments (u) and {u z) of the Distribution f_(u) Corresponding to  

Particles Injected with Uniform Velocity Distribution in Three Velocity Intervals, and 
Returning before t = 15, as Determined from Simulations with 3000  Particles Each 

Using four Different Discretization Intervals r 

r 0.05 0.02 0.01 0.005 (or) a 

0 < u' < 0.5 (u) 0.355 0.322 0.314 0.258 (7) 
(u 2) 0.268 0,236 0.225 0.176 (12) 

1 < u' < 1.5 (u) 0.767 0.715 0.746 0.721 (11) 
(u z) 0.844 0.780 0.805 0.778 (24) 

2 < u' < 2.5 (u) 0.866 0.892 0.893 0.893 (13) 
(u z) 1.088 1.103 1.107 1.101 (30) 

a The "errors" shown in this column (in units of the last digit given) are calculated from 
(N--  1)a 2 = (a ~) -- (a)2; owing to the skewness of the distribution, especially at high u', this 
overestimates the real statistical error. 
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integrate N(uR, t R l u') over all t R, not just up to t R = 15; of  the 105 particles, 
only 59 997 have returned before this time. However, the moments defined as 

f duR u~ N(uR,tR I Je ) / I  duR N(UR,tR I Je) )) 

approach a limit for large t R, as in shown for ((uR(tR))) in Fig. 1. We 
attempted to fit the simulation results for ((u~(tR))), a =  +1, sampled in 
intervals At R = 0.5 with trial functions of  the type 

((u~(G))) = a~ + b~ e x p [ - % G  ] (3.4) 

and 

~(u~(G))) = p~ + q~ t~ ~ (3.5) 

for the interval 6 < t R ~< 15. The fits of type (3.4) were invariably better and 
the best values for c were around 0.4 for a = 1 and a = - 1 .  For  10 < t R ~< 15 
no significant t R dependence was detected by our fitting procedure. 

These results imply that the velocity spectrum for t R > 15 will not be 
too different from the one for t o < t R ~< 15 with large enough to; t o should be 
chosen such that the remaining systematic error, as estimated from (3.4), is 
small compared to the statistical error, which increases with increasing t o . 

1.5 

0.5 

<<u>> 

t ti :x,. 

<<RETURN VELOCITY)> 
VERSUS 

RETURN TIME 

I i~0 1 ,.~ 
5 15 ~R 

Fig. 1. The average return veloci ty  as a funct ion of re turn t ime for a sample  of 10 5 injected 

par t ic les  with d is t r ibut ion u'O[j(u' ). The error bars are s ta t is t ica l  uncer ta int ies  ca lcu la ted  as if 

for a normal  dis tr ibut ion.  The curve is the best  fit of type (3.4). At  the r ight  we indicated the 
l imit  x ~  for high t R and the average  xeff over 8 < t R ~< 15. 
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This criterion yields a value of t o between 6 and 10; we chose t o = 8 for our 
calculations. This means that we approximate A(ulu')  by 

a(ul u') - N(u') dt .  N(u, t R I u') 

+ J dtR N(u, tR I u') (3.6a) 
~>(u, 81 u') -~>(u,  151 u') J~ 

with 
t 

JU> (u, t] u ' ) =  N(u')  -~ i  dtR N(u, t R l u ')  (3.6b) 

and N(u') the number of particles in the simulation with initial velocity u'. 
In practice, the JU> are of course determined by averaging over sample 
intervals of u and u';  we used a sampling interval of 0.05. To minimize the 
influence of the sampling errors we did not use the corrected A(ulu')  for 
determining the solution (2.15) of the Milne problem, but performed instead 
the analogous correction on the integral over A (u]u') appearing in (2.15). 

As a check we show in Fig. 2 the statistics of return velocities 
corresponding to an initial velocity distribution 

jo(U') ~ u' exp[-�89 'z] 

u E ( u )  
,~ " " ~ez~ f ( u ) / f , ,  (u) 

o.6 e$~e- ' -~e.~lp 1 t ,n, e :  �9 

n o �9 

0.6 

0.~. u 

0.2 

1.0 20 U 

Fig. 2. The return velocity spectrum for an equilibrium distribution u'r ) of injection 
velocities. The curve is the theoretical spectrum; the spectrum measured for 0 < tR ~ 15 (after 
rescaling) is indicated by A; the spectrum after correction for the late returners by 0.  The 
insert shows the ratio of the corrected and the theoretical spectrum for very low return 
velocities; the shortfall is ascribed to discretization errors. 
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This corresponds to a thermal equilibrium distribution for the injected 
particles, and the return velocities should have the same equilibrium 
distribution, shown as a full curve in the figure. The "experimental" 
distributions are the spectrum of return velocities for t R ~< 15, rescaled to 
have the same area, and the result calculated with the A ( u l u '  ) as determined 
by (3.6). The discrepancy between the latter and the theoretical curve is 
barely larger than the statistical uncertainly in the points calculated with the 
corrected A ( u l u ' ) ,  determined in a way explained more fully in Section 4. 
The discrepancy is, moreover, almost completely due to the low-velocity part 
of the spectrum, where the "experimental" points are consistently too low, as 
expected from the discretization error. This point is also clear from the 
"experimental" moments ((u'~)), defined as the ((u s (tR))), but with time- 
integrated N(u, t R I Jc) 

' ) )e=  1.218, ((b/))e ~- 1.286, ((U2))e = 2.031 (3.7a) ( u -  

which must be compared with the theoretical values 

((U--1)) = 1.253, ((u)) = 1.253, ((u2)) = 2.000 (3.7b) 

The discrepancies are as expected from a shortage of slow particles. In 
particular, the shortfall in ((u-l))  is due almost completely to the first three 
velocity channels. 

A qualitative explanation of the convergence of the velocity spectrum 
for large t R follows from the fact that the solution of the Klein-Kramers 
equation must approach a Chapman-Enskog solution for exp[--t] ,~ 1 and x 
outside the boundary layer. (19)'4 This solution is governed by a density in x 
space obeying the diffusion equation. Without absorbing boundary this 
density for initial velocity u 0 and initial position 0 would have the initial 
condition ~23) 

n(x, ~) = 6(x - Uo) (3.8a) 

To account, at least approximately, for the absorbing boundary we introduce 
an ad hoe correction factor C(Uo) for absorption prior to t = 3/2 and impose 
the boundary condition mentioned after (2.16): 

n ( - x  M, t) = 0 (t > 3/2) (3.8b) 

The diffusion equation with this boundary condition can be solved by the 
method of images; the solution is 

n(x, t ) =  e(Uo)[4rc(t- 3/2)]-3/2{exp[--(x -- Uo)2/4( t -  3/2)] 

- -  exp[--(x + 2xM + uo)Z/4(t -- 3/2)]} (3.9) 

4 For an informal survey see Ref. 22. 
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This implies a current, measured at x =--XM, equal to 

(47r)-l/2(t - 3/2)-3/2e(Uo)(XM + Uo) exp[--(x~ + Uo)2/4(t -- 3/2)] 

This type of t dependence is also found for the number of particles returning 
to the boundary at large tR in our simulation. 

For very high t values the density profile (3.9) becomes linear over a 
large range of x values, and the spectrum of emerging particles should 
become that of the Milne solution (2.15). This limit is not quite reached in 
our simulation; the average velocity of the particles returning at 8 < t R ~< 15 
is 97% of that in the Milne solution as obtained by Burschka and 
Titulaer, C12) a value confirmed in the present work. The discrepancy is due to 
the bending over of the density profile (3.9); this leads to a lower number of 
particles with high negative velocities in the Chapman-Enskog region, ~9) 
and hence also in the boundary region. Since the curvature of n(x, t) 
decreases only very slowly with t, the discrepancy is also expected to 
decrease very slowly, and the spectrum for 8 < t R <~ 15 can be assumed to be 
a good representation of that of all later returners. However, this implies a 
small, but systematic, underestimate of the average return velocity. An upper 
bound for this systematic error is given in the next section. 

The physical reason for the independence of t R of the velocity spectrum 
of particles at large t R is that these particles have undergone almost complete 
thermalization during their sojourn in the interior region of the fluid, thereby 
losing their memory of the time of injection. If this is the relevant 
mechanism, then also the memory of the injection velocity should be lost. 
We observe indeed that the moments of N(u, tR lu '  ) lose their dependence of 
u' for large t R, starting at about t R = 6 for the particles with low u', and 
even earlier for the faster ones. 

4. THE MILNE SOLUTION 

In our main simulation we injected 105 particles with a distribution over 
velocity proportional to u '2 exp[-�89 'z] O(u'), corresponding to a density 
O(u') #6(u') ~ O(u') u' exp[ -  �89 Of the returning particles we registered 
the return velocity distribution, in sampling intervals of 0.05, and several 
moments of the return velocity, for all t R up to 15. These data were subse- 
quently summed over t n, with increased weight for the interval 8 < t n ~< 15 
to account for particles that did not return, as explained in the previous 
section. In this way the second term in (2.15) and several of its moments are 
found; the calculation of the Milne solution at the wall pM(u, 0) is then 
elementary. 

The result for PM(u, 0) is shown in Fig. 3. A noteworthly feature is that 
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Fig. 3. The Milne solution P'~4(-u,x) at the wall, as determined form our simulation data. 
The drawn curve is the fit (4.2). 

PM(u, 0) appears to approach a finite limit for u ~ 0. However, in view of the 
uncertainty of the data at low u, a behavior like cu ~ with a ~< 1/2 cannot be 
excluded [the value a = 1/2 is suggested by the asymptotic analysis(13)]. A 
parametrization of type (2.21) yields 

exp[�89 2 ] PM(-u, O) ~ O(u)[O.g415qo(u ) + 0.3681ql(u ) 

- 0.0602qz(U) + 0.0271q3(u ) - 0.0132q4(u)] (4.1) 

= O(u)[0.1749 + 1.1286u - 0.5401u 2 + 0.1739u 3 - 0.0204u 4] (4.2) 

Adding more terms in (4.1) would not be justified; the discrepancy between 
the calculated PM(u,O) and the fit (4.1) is already almost equal to the 
statistical uncertainty in PM(u, 0). The latter uncertainty was estimated by 
assigning the uncertainty (ni) ~/2 to each number ni of returning particles in a 
velocity channel (separately for 0 < G ~< 8 and 8 < G ~ 15) and summing 
their squares with the appropriate weights. According to this criterion even 
the significance of the coefficient of qa(U) is marginal. The results in (4.1) 
and Fig. 2 for not too small negative velocities are in good agreement with 
those in Fig. 2 of Ref. 12a. 

In Table III  we collect our results for several moments of PM(u, 0), 
foremost among them the Milne length x M given by (2.17), as well as the 
corresponding results from earlier work. (~2'15) The errors on our results as 
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Table II1. Various Moments of the Distribution upM(-u) 
Corresponding to the Solution of the Milne Problem 

Simfl BT b Ta b Tc b bdl  e bd2 c 

((u-  ~)) = n(0) 0.942(8) 0.914 1.044 0.920 0.934(5) 0.985(12) 
((u)) = x,~ 1.454(4) 1.461 1.440 1.485 1.464(1) 1.439(7) 
((u2)) 2.564(17) - -  - -  - -  2.600(4) 2.550(22) 
((u 3)) 5.200(50) - -  - -  - -  5.307(11) 5.195(60) 

a The first column is determined from our simulation with 105 injected particles; the statistical 
error is determined by comparing five subsamples of 2 �9 104 particles. 
b The results from ref. 12a (BT) and from two approximate calculations by the Trondheim 
group (ref. 15, Table IIl). 

Upper and lower bounds as derived from extreme assumptions about the systematic errors, 
as explained more fully in the text. 

given in the first column are purely statistical errors, calculated via a 
separate calculation of each of the moments for five subsamples of 2 • 104 

injected particles that together form our main sample. There are two sources 
of systematic error: the discretization of the time step and the correction for 
particles not returned before t = 15. 

For the error caused by the correction for nonreturning particles we can 
find an upper limit. The moment ((u~))M- -- (u~+l) / (u)  derived from (2.15), 
with (u s)  indicating an average over PM(U, 0), can be written as 

((U'~))M = �89 + ~yR((U'~))e + �89 -- yR)((U'~))l (4.3) 

where ((U'~))M is the moment of the Milne solution, ((u~))c that of r 
((u~))e that of the contribution to PU(u, 0) from particles returning before 
t = 15, and ((u~))t that of the late returners; Ye is the fraction of particles 
that returns before t = 15. The calculations in the first column of Table III  
were made by taking for ((u~))t the results found for 8 < t R ~ 15, which 
probably is a slight underestimate for a >/1, and an overestimate for a = - 1 .  
As argued at the end of Section 3, an upper bound can be found by putting 
((u'~))t equal to ((U'~))M . This also results in a solvable equation for ((U~))M; 
the results so obtained for the moments are given in the next-to-last column 
of Table III. The difference between first and next to last columns is an 
upper bound, but certainly a considerable overestimate, of the systematic 
error due to the late returners correction. 

Another estimate of the total systematic error can be deduced from the 
data in Fig. 2 and (3.7), the return velocity statistics for an equilibrium 
distribution of injected particles. Since this distribution contains many more 
low-velocity particles, the discretization error should be much larger for this 
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case and the error due to the correction for late returners somewhat smaller. 
Hence we obtain a lower bound for the ((uS)) with a ) 1 (and an upper 
bound for a = - 1 )  when we correct the ((uS)) found from the simulation by 
the factor by which the analogous result for the equilibrium distribution 
(3.7a) differs from the theoretical value (3.7b). The results so obtained are 
given in the last column of Table III. The data in the last two columns 
indicate that the systematic error is of the same order as the statistical one 
and the two sources of systematic errors work in opposite direction. 

A comparison of our results in Table III with the extrapolated results of 
Burschka and Titulaer show excellent agreement for the Milne length and 
small discrepancies for the density at the wall. The latter discrepancy is not 
too surprising, since the extrapolation used there spanned a wide interval, 
and the approach of the variational estimates to the true value was so slow, 
that the extrapolation exponent could not be determined very precisely. (53) 

The numerical result for PM(u,O) was also expanded in the Pagani 
eigenfunctions using the expansion formula (2.9). This allows us to construct 
PM(u, x) by replacing the 0,(u) by the corresponding ~,,(u, x) of (2.4)-(2.6). 
The expansion coefficients d+,  of (2.9c) for PM(u,O) can be found 
analytically from the parametrization (4.2) and the explicit form (2.6b). (z4) 
We determined the d~ ,  for n ~< 12. The contribution of ~u+~(u,x) to the 
density is also readily calculated from (2.6b); one finds 

( du qJ+,(u, x) = exp[-xnl/2](-1)"(Tr/2n)~/4(n/e)'/2(n!) - 5/2 

= exp[-xn' /Z](-1)"(Zn)-i /2(1 - (24n)- '  + .. .) (4.4) 

where we used Stirling's formula. 
The contribution of the first 12 boundary solutions to n(x) is given in 

Fig. 4. This is certainly an underestimate, as is clear from the value at the 
wall, which has reached barely half its full value. An upper bound can also 
be found; the asymptotic analysis (13) shows that the d ~  have the form 

= ( -  1)" n -  2/3 c ( n -  1/6) (4.5) 

with c(x) a smooth function decreasing with x for small enough x. The 
values of c(x) found from the dA/H for 3 ~< n ~ 12 are constant to within a 
percent; if one replaces c(x) by this constant c0=0.153 everywhere, one 
obtains 

An(x) ~ 2-  1/2C 0 ~. n -7/6 exp [--n 1/2x1 -- 2-1/2eoZ(~, x) (4.6) 
n = l  

822/36/3-4 2 
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Fig. 4. The density profile in the Milne solution near the wall. The insert shows n(x) and its 
asymptote; the main figure shows the difference An(x) between the two, as approximated 
using the first 12 Pagani coefficients d~, (broken curve), and from the extrapolation (4.7) 
(full curve). The two approximations are bounds to the actual curve; the value of the latter for 
x = 0 (obtained independently) is also shown. 

The function Z(~,x), which approaches ~(-~) for x ~ 0 ,  can be calculated 
from the expansion (4.6) for large x and continued to smaller x via 

oo 

Z(7,x) = V' (_l)n+ln-V/6 expl_nl/Zx] + 2 1/6Z(~, 21/2x) 
r l - -1  

(4.7) 

The function so calculated is also shown in Fig. 4. Note its extremely fast 
decay for small x: between x = 0  and x = 0 . 0 1  it decreases by over 25%. 
This must be due to terms in (4.6) of  order 104 and higher. This feature is 
shared by the exact An(x). (13) The function (4.6) overestimates An(x); at 
x = 0 the "overshoot"  is almost 40%, but it decreases rapidly with x. 

After the completion of this work a further approximate treatment of 
our problem, by Mayya  and Sahni (26), appeared. Their results x M = 1.50 and 
n(0) = 0.98 are reasonable, but especially their x~ lies outside of the bounds 
found in our work. They also found a steep boundary profile n(x) as in our 
Fig. 4. A closer comparison with their work will be given elsewhere. (13) 

5. THE ALBEDO KERNEL 

By keeping track of the injection velocities of the particles in our main 
simulation sample, we could concurrently amass data on the spectrum of 
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return velocities of samples of particles with injection velocities in intervals 
of u' with a width chosen as 0.05. After correction for nonreturning particles 
according to (3.6) this yields a numerical determination of the albedo kernel 
A(ulu').  Since the main sample contains few particles with low velocities, 
with moreover a skewed distribution over the sampling intervals, we 
supplemented it for this purpose with 3000 particles distributed uniformly 
over the interval 0 < u ' <  0.5 (the improved sample was also used for 
Fig. 2). 

In this section we present an analytical representation for the data so 
obtained for A(u[ u'), or rather for 

l u ' )  = u 'A(u 1 (5.1) 

the density distribution at u < 0 for unit injected current at velocity u'. More 
specifically, we search for analytic functions f ~ (u lu ' )  such that the 
representation error 

Aa = du ]f _(u l u' ) - f~_(ulu')12 p(u) (5.2) 

with an appropriate weight function p(u), is minimal. Ideally, p(u) should be 
the inverse square of the uncertainty inf_(ulu'). Since A(ul u') is measured 
as a number of particles in a given channel, its statistical uncertainty is equal 
to its square root; this suggests a weight 

p(u) u[f (ulu')l (5.3) 

Obviously it is inconvenient to adopt separate p(u) for each u';  since, 
moreover, mostf_(u[u')  are roughly of the form (a + bu)exp[-�89 2] with b 
much larger than a, we can attain a great analytical simplification at 
moderate cost in the fidelity of the fit by choosing 

p(u) = exp[lu 2] (5.4) 

this choice gives a somewhat too large weight to the data at low u. An 
orthonormal set of functions with respect to this weight function is given by 

Q.(u) = exp [ -  �89 2] q.(u) (5.5) 

with qn(u) the polynomials introduced in Section 2 and tabulated in Table I. 
The expansion formula with respect to the basis (5.5) is given by (2.21). 

We found that our data for f_(u ] u') for all u' could be fitted with a 
linear combination of Q,(u) with n = 0, 1, 2, 3, 4. The quantity A a defined by 
(5.2) is then of the same order of magnitude as the integrated statistical 
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uncertainty in f_(ulu '  ) itself; any additional terms would merely fit the fluc- 
tuations in our data. 

The expansion coefficients 

s,(u') = f :  du q , ( u ) f  (u lu') (5.6) 

turn out to be smooth functions of  u ' ,  especially for not too small u ' .  In 
Table IV we give the values sn(u' ) for the first ten velocity channels, as 
obtained from our simulation, for 0 ~< n ~< 4. For n >/2  and u > 0.5 the G(u') 
do not show any significant dependence on u ' ,  and we give in the table their 
averages over u '  > 0.5 with their statistical error. For n = 0, 1 the sn(u' ) can 
be fitted well by a function of the form 

s~(u') = q, + b, e x p [ - 2 . 2 3 u ' ]  (5.7) 

the coefficients a, and b, are also included in the table. 
The rapid approach of the G(u') to constant values reflects the ther- 

realization of lastly injected particles during their passage through the fluid. 
The quantities So(U' ) and sl(u' ) can be fitted with the same exponential, since 

Table IV. The Expansion Coefficients s n of the Solution f_(u)  of the Albedo Problem for 
an Input f+{u')  Corresponding to a Unit Current Confined to the Indicated Velocity 

Intervals, as Determined from our Simulation 

U r a  SO S 1 S 2 S 3 S 4 

(0.0, 0.05) 
(0.05,0.1) 
(0.1, 0.15) 
(0.15,0.2) 
(0.2, 0.25) 
(0.25, 0.3) 
(0.3, 0.35) 
(0.35, 0.4) 
(0.4, 0.45) 
(0.45, 0.5 ) 

a n 

bn 

6.21 -6 .74 6.37 -5.57 4.64 
3.98 -3 .79 3.07 -2 .22  1.41 
3.00 -2.49 1.74 -1.03 0.38 
2.45 -1.76 1.09 -0.53 0.07 
2.02 -1.19 0.63 -0.16 -0.22 
1.80 -0 .90 0.39 -0.03 -0.17 
1.80 -0 .90 0.41 -0.01 -0.21 
1.62 -0 .66 0.23 -0.08 0.02 
1.33 -0.28 4).02 0.21 -0.30 
1.35 -0.31 0.05 O. 17 -0.15 

0.88(1) 0.32(1) -0.14(1) 0,06(1) -0.03(1)  
1.23(10) -1.63(13) - -  - -  - -  

a For u' > 0.5 the moments  are well represented by s~(u')  = a n + b n exp[ -2 .23u ' ]  for n = 0, 1 
and by constants for n >~ 2. Since the errors are lowest in the lowest velocity channels it may 
be advisable to subtract a multiple of the Maxwell distribution from the input f+ (u ' ) ,  such 
that the n e w f + ( u ' )  has a zero at u ' =  O, before applying the results from this table. 
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a linear combination of them yields the returning current, which equals unity 
irrespective of u'. 

A second, probably more useful, way to represent the albedo kernel is 
by expressing the related kernel 

S ( u l u ' ) ~ u - ~ A ( u l u ' ) u  ' (5.8) 

which connects the density for u < 0 to that for u > 0 in the albedo problem: 

f_(u) =f  du' S(u ]u')f+(u') (5.9) 

on the basis of the functions (5.5). As we already saw, the coefficients s, of 
f_(ulu' ) with n >/5 are not significant, so we give only the coefficients 
connecting the first five Q,(u). As input for this calculation we need the 
velocity spectrum for injected velocity distributions (u') ~ exp[-�89 '2] with 
1 ~ a  ~< 5. We calculated those from the numerically determined A(u]u') 
with the following corrections: 

(a) as the response to u' exp[-�89 the Maxwell distribution, we 
took the exact Maxwell distribution, which should result due to the second 
law of thermodynamics, rather than the calculated response shown in Fig. 2, 
which is influenced rather strongly by discretization errors 

(b) as the response to u '2exp[ - �89  '2] we took the result from 
Section 4, thus avoiding sampling errors 

(c) we replaced the velocity spectra of returning particles in each of 
the u' intervals with u ' >  2.5 by the average velocity spectrum of all 
particles with u ' >  2.5. As we saw before, these spectra do not show any 
significant u' dependence in this region; on the other hand the small numbers 
of particles in each of these channels would lead to large statistical errors, 
especially in the response to u '~ exp[-�89 'z] with large ct. 

The resulting 5 • 5 matrix representing S(ulu' ) is given in Table V. 
The last row in the table gives for each column the typical amount by which 
the entries in each of the columns are affected by the corrections (b) and (c). 
This should serve as a rough measure of the statistical uncertainties in the 
matrix elements. A salient feature of the matrix is the rather rapid approach 
toward equilibrium in the course of a single passage through the fluid. The 
norm of the deviation from equilibrium decreases by a factor 0.44 for the 
second column and by a factor less than 0.25 in the remaining ones; the sum 
of the eigenvalues different from unity is 0.70. Since the higher Q,(u') 
exhibit increasingly rapid oscillations in u', whereas the response f ( u l u ' )  
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Table V. The Expansion Coefficients s n of the Solution f_(u) 
of the Albedo Problem for Inputs 

f+(u') = Qn(u')= exp[- (1 /2)u '2] qn(u') 

Input: Q0 QI Q2 a Q3 ~ Q4 a 

S o 

$1  

S 2 �9 

$3 

$4 

1.0000 0.4782 0.0472 -0.0243 0.0204 
0 0.3671 -0.0627 0.0318 -0.0286 
0 -0.2236 0.1564 -0.1039 0.0796 
0 0.1005 -0.1325 0.0963 -0.0835 
0 -0.0390 0.0770 -0.0715 0.0783 

o/A6 -- (25) ((25)) ((35)) ((55)) 

a The error estimates for this column are the changes in a column element effected by 
smoothing out of the most dangerous statistical fluctuations; the error for the second column 
is calculated as in Table III. 

varies only slowly with u ' ,  the contract ing effect of  S(ulu')  will be even 
more pronounced for the higher Q,(u'). Therefore, one may expect that  the 
representat ion of  S(ulu'  ) in Table V will yield quite good results for the 

albedo problem, at least for s m o o t h f + ( u ' ) .  

6. PARTIALLY A B S O R B I N G  W A L L S  

In this section we shall show how the result obtained for the albedo 
kernel can be used  to solve the Milne and albedo problems for par t ia l ly  
absorbing walls. At  a par t ia l ly  absorbing wall the returning part icles with 
velocity u '  are not all absorbed,  but have a probabi l i ty  W(u l u') to be rein-  
jected into the fluid with velocity u. Fo r  the albedo problem with an imposed 
external current uf+(u) we thus obta in  the equations 

uf+(u) = uf +(u) + du' W(ulu ' )u ' f_ (u ' )  (6.1a) 

uf_(u)= du'A(u u')u'f+(u') (6.1b) 

Their solution can be written 

uf_(u) = [1 - - A  * W ] - I *  A * uf+(u) (6.2) 

where the stars denote contract ions  with respect to the velocity variable over 
the half-line 0 < u < oo, and the inverse is also meant  in the contract ion 
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sense. The part f+(u) of the solution of the albedo problem follows 
immediately from (6.1a) and (6.2). 

The opera tor  [ 1 - A  * W] is invertible whenever the absorption 
probability 

r (u ' )  = 1 - f c t u w ( u  l u') (6.3) 

does not vanish identically for all u'. To demonstrate this we first observe 
that A(u, u') conserves the particle current and is positive for all u > 0 [there 
is always a set of finite measure of realizations of the stochastic force ~(t) in 
(3.1) that leads to return velocities between u and u + Au]. Thus, for r(u) not 
identically zero, W , A  always decreases the current when acting on a 
nonnegative function; thus it acts as a contraction with respect to the norm 

co 

]lfll = fo du u If(u)[ 

If we further assume that A(ulu '  ) is bounded from below for each u 
uniformly in u', as is suggested by the results in Section 5, an upper bound 
less than unity follows for the spectrum of A * W, and invertibility is 
assured. Of course this is just the outline of a possible rigorous proof. A 
rigorous discussion of the special case v(u) = const, using somewhat different 
techniques, is given in a forthcoming paper by Beals and Protopopescu.(28) 
The solution of the Milne problem with partially absorbing wall can be 
related to the solution (6.2) just as the solution (2.15) can be related to 
(2.13). We shall denote this modified Milne solution by p W(u); it is given by 

u p W ( u ) = u O ; ( u ) + [ 1 - A ,  W] ' * A ,  [u'O;(u')O(u')] (6.4) 

The solution pW(u) has a particularly simple form if the particles not 
absorbed at the wall are reflected diffusely: 

W,(ulu' ) = (2~)~/2Ur - v(u')] (6.5) 

Since A(u]u') leaves u'(bo(U' ) invariant, the solution PW'(u) must have the 
form 

W. PM (u) = PM(U) + a~o(U ) (6.6) 

The coefficient a.  can be determined by requiring that the particles not 
absorbed at the wall are all reinjected: 

;~ ;7 du' lu'[ [1 --v(u')][pM(u')+a~(bo(U')]= duua~Oo(U ) (6.7a) 
- - c o o  
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o r  

oo 0 a~fo duuv(U)r dulul[1-r(u)lP~(u) (6.7b) 
- -  0 0  

This formula allows an analytical evaluation of % if we use the represen- 
tation (4.1) for pM(u) and r(u) is sufficiently simple. In particular, if we 
choose 

:(u) = O( lu l -  u3 (6.8) 

i.e., all particles faster than u t are absorbed and all slower ones are reflected, 
then (6.7a) should reduce to Eq. (4.3) of Ref. 12b. (Unfortunately, this 
formula contains a misprint: the integral should be taken from - u  t to 0, not 
form - m  to - u  t. The explicit calculations in Ref. 12b used the correct 
expression.) 

W~ The density profile n~(x) obtained from the continuation PM (U, X) of 
(6.6) is simply the density n~(x) shown in Fig. 4, shifted upwards by the 
amount (2n)l/2a,:. In particular the Milne length x~ corresponding to this 
solution is given by 

X~M = X M Jr- (27~)1/2a~ ( 6 . 9 )  

This quantity for the choice (6.8) is exhibited as a function of u t in Fig. 5. 
For some values of u t it was calculated earlier in Ref. 12b. A comparison for 

1.0 

0.8 

0.6 

X.__~ - ! u , ~  f .r e ~ / . . . . .  

/ RESCALED . .  

/ NILNE LENGTH 
/ VERSUS 

J THRESHOLD VELOCITY 

I 2 3 Ut 

Fig. 5. The Milne length for a diffusely reflecting partially absorbing wall with sharp 
threshold velocity u t, as a function of u t. The figure shows XM(U~) divided by the limiting 
expression for high threshold ('"transition state theory") (27r) m exp[(1/2)u~]. 
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Table VI. The Milne Length as a Function of the Threshold Velocity UrfOr a Diffusely 
Reflecting Partially Absorbing Wall with a Sharp Absorption Threshold at u t 

u t 0.500 0.707 1.000 1.414 2.000 4.000 

XM(Ut) a 1.617 1.871 2.589 4.966 16.20 7469 

BT a 1.63 1.88 2.59 4.94 16.14 7468 

This row gives our results. 
b This row gives the results of Ref. 12b. 

these values of u t is contained in Table VI. The agreement is excellent in 
spite of the shortcomings of the approximation for pM(u) employed in the 
earlier work. 

To conclude this section we note that our results can also be used to 
construct the stationary boundary layer solution for a completely reflecting 
wall, i.e., for r ( u ) =  0 in (4.3). This requires finding the eigenfunction of 
A , W with eigenvalue 1, as is evident from (6.1) with f +  = 0. A nontrivial 
result is found only when W does not leave the equilibrium distribution 
UOo(U ) invariant. In fairness it should be pointed out that the reduction to a 
one-dimensional problem, as discussed in connection with (2.2), depends on 
the fact that three-dimensional W(u ] u ' )  does not disturb thermal equilibrium 
in the tangential components of u'. This severely limits the number of 
realistic nontrivial models. 

7. CONCLUDING REMARKS 

In this paper we presented a new numerical technique for solving Milne 
and albedo problems for the one-dimensional Klein-Kramers equation. The 
method requires considerably less computation time than that of Burschka 
and Titulaer.(~~ We confirmed the main results of Ref. 12, especially those 
for the Milne length; thus we corroborate their status as a yardstick for 
approximate treatments,(l~,17! which are simpler, but hard to assess. In a 
number of respects our results go beyond those of Ref. 12; we mention in 
particular the parametrization of the albedo kernel in Section 5 and of the 
velocity distribution at the wall in Section 4. 

The main limitation of our treatment is that to essentially one- 
dimensional problems. The basic requirement is that the geometry should be 
planar, and that the particles injected into the fluid should have a Maxwell 
distribution with respect to their tangential velocities; in any three- 
dimensional problem f~_(u) and W(u [u ')  should be Maxwellian in Utg. This 
leaves room, e.g., for a slight generalization of the diffuse reflection model 
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(6.5), such that r ( u ' )  does not depend on u x only but, say, on the kinetic 
energy �89 [u ' l  2. 

Apar t  from those men t ioned  in Section 6 we see two further types of 
problem to which our results could be applied. Fi rs t  one could consider slab 
geometries; the formal ism for this case was essentially given by Beals (25) 
(This paper  contains an error corrected in Ref. 11.) Such calculat ions might 
prove awkward  for not too thick slabs, since one is vir tual ly forced into 
expansions in terms of Pagani  functions, which show very slow convergence. 
Secondly one might tackle t ime-dependent  problems.  The necessary 
modif icat ions of  the formal ism are alluded to briefly in Ref. 10. We merely 
mention here that  the statistics of  return velocities resolved with respect to 
the return t ime t R allows one to determine the Laplace  t ransform of the time- 
dependent general izat ion of  the albedo kernel, at least  for values of the 
Laplace  variable small  compared  to the inverse of the sampling interval 
At  R = 0 . 5 .  An extension to the K l e i n - K r a m e r s  equation with constant  
external field (1~ is also possible,  but it would require fresh simulations for 
each value of  the field strength. 
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